Crystal Structure

Communications

ISSN 0108-2701

Aqua(5,6-dimethyl-1,10-phenanthro-line- N, N^{\prime})(glycolato-O, O^{\prime})copper(II) nitrate

Gerardo Medina, ${ }^{\text {a }}$ Laura Gasque ${ }^{\text {a* }}$ and Sylvain Bernès ${ }^{\text {b }}$

${ }^{\text {a }}$ Departamento de Química Inorgánica, Facultad de Química UNAM, Ciudad Universitaria, México DF 04510, México, and ${ }^{\text {b }}$ USAI, Facultad de Química UNAM, Ciudad Universitaria, México DF 04510, México
Correspondence e-mail: gasquel@servidor.unam.mx
Received 8 September 1999
Accepted 28 March 2000
The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3}\right)\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO}_{3}$, is the first example of a mixed copper glycolate compound with a diimine ligand. The copper(II) compound lies in a slightly distorted square-pyramidal coordination environment with one water molecule coordinated in the apical position. The glycolate ligand binds to the Cu atom as a chelate through a carboxylate and the $\alpha-\mathrm{OH} \mathrm{O}$ atom which, together with the N atoms of the substituted phenanthroline, constitute the base of the pyramid.

Comment

Solution-equilibrium studies performed on a wide variety of ternary copper chelates in which one ligand is a good π acceptor like $2,2^{\prime}$-bipyridine or 1,10 -phenanthroline and the other is an oxygen donor have always shown that, contrary to what is expected on a statistical basis, the stability constant for the reaction

$$
\mathrm{Cu}(\mathrm{~N}-\mathrm{N})^{2+}(\mathrm{aq})+\mathrm{O}-\mathrm{O}^{n-}(\mathrm{aq}) \leftrightarrow \mathrm{Cu}(\mathrm{~N}-\mathrm{N})(\mathrm{O}-\mathrm{O})^{(2-n)+}(\mathrm{aq})
$$

is always larger than for the reaction:

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{O}-\mathrm{On}-(\mathrm{aq}) \leftrightarrow \mathrm{Cu}(\mathrm{O}-\mathrm{O})^{(2 n)+}(\mathrm{aq}) .
$$

This behavior has been explained by Sigel et al. (1973) based on the hard and soft acids and bases principle. Since a π acceptor ligand will withdraw electron density from a bound copper ion, $\mathrm{Cu}(\mathrm{N}-\mathrm{N})^{2+}$ will be a harder acid than simple aqueous Cu^{2+} and consequently hard bases such as oxygen donors will prefer the former over the latter.

To be able to evaluate the effect of the variations in π accepting properties of differently substituted phenanthrolines, of which ternary complexes have low solubility, we have studied the variation in $\mathrm{Cu}-\mathrm{O}$ stretching frequencies of a series of these complexes in the solid state (Gasque, Medina et al., 1999), finding a very good correlation between them and the $\mathrm{p} K_{a}$ values of the substituted phenanthrolines. It has been previously accepted (Drago \& Joerg, 1996) that the π-acceptor ability of a ligand increases as its σ basicity, or $\mathrm{p} K_{a}$, decreases.

Furthermore, for these spectroscopic studies to be valid, isostructurality of all the complexes must be proven. With this objective, we have crystallized and determined the structure of a series of $\mathrm{Cu}(x$-phen $)(\mathrm{O}-\mathrm{O})$ complexes (Solans et al., 1987; Gasque, Moreno-Esparza et al., 1999; Gasque et al., 1999a,b), where x-phen is a substituted phenanthroline and $\mathrm{O}-\mathrm{O}$ is malonate or salicylaldehydate. In this paper, the $\mathrm{O}-\mathrm{O}$ ligand is an α-hydroxyacid anion. Since we have also performed a systematic study of the IR spectra of metal glycolates (Medina et al., 2000a), comparison of the $\mathrm{Cu}-\mathrm{O}$ frequencies for the title complex, (I), shows that they are indeed shifted to higher values, as expected.

(I)

The glycolate anion is known to form both monomeric and polymeric complexes. The Mn and Zn complexes are discrete six-coordinate pseudo-octahedral molecules having the formula cis- $\mathrm{MG}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \quad(G=$ glycolate, $M=\mathrm{Mn}, \mathrm{Zn}$; Fischinger \& Webb, 1969; Lis, 1980), while the Cu and Co complexes constitute a bidimensional sheet-coordination polymer in which each metal atom is octahedrally coordinated to glycolate ligands in a trans configuration, and carbonyl O atoms from adjacent units complete the coordination octahedron (Prout et al., 1968; Medina et al., 2000b).

In (I), each $\mathrm{Cu}^{\mathrm{II}}$ atom is at the center of a distorted octahedron, defined by the $\alpha-\mathrm{OH}$ and the carboxy O atoms from the glycolate ligand, both N atoms from the phenanthroline ligand and two trans- O atoms, one from a water molecule and the other from the nitrate moiety. The plane defined by the four donor atoms from the two chelating ligands has an r.m.s. deviation of $0.0573 \AA$ [distances: N1 0.0549 (9), N12 -0.0588 (10), O17 0.0597 (10) and O21-0.0558 (9) Å]. Atom Cu 1 is $0.1593 \AA$ above the least-squares plane. Indicative of a typical Jahn-Teller distortion, distances from the Cu atom to the two axial O atoms are elongated and very different from each other. While $\mathrm{O} 22(W)$ is 2.2681 (18) \AA from the metal

Figure 1
A view of the title compound with displacement ellipsoids shown at the 40\% probability level.

Figure 2
A representative of the complete coordination around the Cu atom and the hydrogen bonding in the title compound.
center, $\mathrm{O} 26\left(\mathrm{NO}_{3}\right)$ is 2.932 (3) \AA from Cu 1 , with an $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angle of $170.12(16)^{\circ}$.

The free rotation of the coordinated water molecule is hindered by a rather strong hydrogen bond to the free carbonyl group of a neighboring cation, with an $\mathrm{H} 22 \mathrm{~A} \cdots \mathrm{O} 19^{\mathrm{i}}$ separation of $2.00 \AA$ and an $\mathrm{O} 22-\mathrm{H} 22 A \cdots \mathrm{O} 19^{\mathrm{i}}$ angle of 172° [symmetry code: (i) $-x,-y,-z+1$]. Additional hydrogen bonding stabilizes the overall packing, as shown in Fig. 2, involving the three O atoms of the nitrate ions, the OH group of the glycolate (O 21) and the water molecule (O 22). Separations range from 2.00 to $2.33 \AA$ (Table 2).

Experimental

5,6-Dimethyl-1,10-phenanthroline $(0.5 \mathrm{mmol})$ was dissolved in methanol and added to a methanolic solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ (0.5 mmol). To this mixture an aqueous solution of glycolic acid $(0.5 \mathrm{mmol})$ neutralized with $\mathrm{NaHCO}_{3}(0.5 \mathrm{mmol})$ was added. The resulting deep-blue solution was left standing until crystals formed, which were then filtered and vacuum dried.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3}\right)\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}\right)-\right.} \\
& \left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO} \mathrm{O}_{3} \\
& M_{r}=426.87 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.0373(7) \AA \\
& b=10.0928(11) \AA \\
& c=13.1649(13) \AA \\
& \alpha=103.225(8)^{\circ} \\
& \beta=105.450(12)^{\circ} \\
& \gamma=103.760(9)^{\circ} \\
& V=831.68(15) \AA^{3}
\end{aligned}
$$

Data collection

Siemens $P 4$ diffractometer	$R_{\text {int }}=0.019$
$2 \theta / \omega$ scans	$\theta_{\max }=28^{\circ}$
Absorption correction: ψ scan	$h=-1 \rightarrow 9$
$\quad(X S C A N S ;$ Fait, 1991$)$	$k=-12 \rightarrow 12$
$T_{\min }=0.614, T_{\max }=0.762$	$l=-17 \rightarrow 17$
4927 measured reflections	3 standard reflections
3969 independent reflections	every 97 reflections
3406 reflections with $I>2 \sigma(I)$	intensity decay: 7.20%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.092$
$S=1.054$
3969 reflections
245 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0419 P)^{2}\right.$
$+0.3303 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.38 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.0109 (14)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 17$	$1.9144(15)$	$\mathrm{Cu} 1-\mathrm{N} 12$	$2.0044(16)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.9913(17)$	$\mathrm{Cu} 1-\mathrm{O} 22$	$2.2681(18)$
$\mathrm{Cu} 1-\mathrm{O} 21$	$1.9918(15)$	$\mathrm{Cu} 1-\mathrm{O} 26$	$2.932(3)$
$\mathrm{O} 17-\mathrm{Cu} 1-\mathrm{N} 1$	$172.93(7)$	$\mathrm{O} 17-\mathrm{Cu} 1-\mathrm{O} 22$	$93.45(7)$
$\mathrm{O} 17-\mathrm{Cu} 1-\mathrm{O} 21$	$83.09(6)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 22$	$92.64(7)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 21$	$99.98(6)$	$\mathrm{O} 21-\mathrm{Cu} 1-\mathrm{O} 22$	$94.83(7)$
$\mathrm{O} 17-\mathrm{Cu} 1-\mathrm{N} 12$	$93.32(7)$	$\mathrm{N} 12-\mathrm{Cu} 1-\mathrm{O} 22$	$97.65(7)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 12$	$82.30(7)$	$\mathrm{O} 22-\mathrm{Cu} 1-\mathrm{O} 26$	$170.12(16)$
$\mathrm{O} 21-\mathrm{Cu} 1-\mathrm{N} 12$	$167.20(7)$		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 21-\mathrm{H} 21 \cdots \mathrm{O} 24^{\mathrm{i}}$	0.86	2.00	$2.795(2)$	154
$\mathrm{O} 21-\mathrm{H} 21 \cdots \mathrm{O} 25^{\mathrm{i}}$	0.86	2.27	$3.030(2)$	146
$\mathrm{O} 21-\mathrm{H} 21 \cdots \mathrm{~N} 23^{\mathrm{i}}$	0.86	2.48	$3.344(2)$	176
$\mathrm{O} 22-\mathrm{H} 22 A \cdots \mathrm{O} 19^{\mathrm{iii}}$	0.88	2.00	$2.747(3)$	172
$\mathrm{O} 22-\mathrm{H} 22 B \cdots \mathrm{O} 24^{\text {iii }}$	0.88	2.24	$3.052(3)$	154
$\mathrm{O} 22-\mathrm{H} 22 B \cdots \mathrm{O} 26^{\text {iii }}$	0.88	2.33	$3.103(3)$	147
$\mathrm{O} 22-\mathrm{H} 22 B \cdots \mathrm{~N} 23^{\text {iii }}$	0.88	2.61	$3.469(3)$	166

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $-x,-y, 1-z$; (iii) $x-1, y, z$.

H atoms on the water molecule (O22) were located in a difference Fourier map and were then constrained to ride on the O atom. The remaining H atoms were placed in idealized positions and refined with a riding model.

Data collection: XSCANS (Fait, 1991); cell refinement: XSCANS; data reduction: $X S C A N S$; program(s) used to solve structure: SHELXTL (Sheldrick, 1995); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97.

The authors acknowledge Patricia Altúzar for her collaboration in the refinement of the crystal structure.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1111). Services for accessing these data are described at the back of the journal.

References

Drago, R. S. \& Joerg, S. (1996). J. Am. Chem. Soc. 118, 2654-2663.
Fait, J. (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

metal-organic compounds

Fischinger, A. J. \& Webb, L. E. (1969). Chem. Commun. pp. 407-408.
Gasque, L., Medina, G., Ruiz-Ramírez, L. \& Moreno-Esparza, R. (1999). Inorg. Chim. Acta, 288, 106-111.
Gasque, L., Moreno-Esparza, R., Mollins, E., Brianso-Penalva, J., RuizRamírez, L. \& Medina-Dickinson, G. (1999). Acta Cryst. C55, 158-160.
Gasque, L., Moreno-Esparza, J., Ruiz-Ramírez, L. \& Medina-Dickinson, G. (1999a). Acta Cryst. C55, 1063-1065.
Gasque, L., Moreno-Esparza, J., Ruiz-Ramírez, L. \& Medina-Dickinson, G. (1999b). Acta Cryst. C55, 1065-1067.
Lis, T. (1980). Acta Cryst. B36, 701-703.
Medina, G., Gasque, L. \& Bernès, S. (2000a). J. Coord. Chem. Submitted.

Medina, G., Gasque, L. \& Bernès, S. (2000b). Acta Cryst. C56, 637-638.
Prout, C. K., Armstrong, R. A., Carruthers, J. R., Forrest, J. G., Murray-Rust, P. \& Rossotti, F. J. C. (1968). J. Chem. Soc. A, pp. 2791-2813.
Sheldrick, G. M. (1995). SHELXTL-Plus. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97 User's Manual. University of Göttingen, Germany.
Sigel, H., Huber, P. R., Griesser, R. \& Prijs, B. (1973). Inorg. Chem. 12, 11982000.

Solans, X., Ruiz-Ramírez, L., Briansó, J. L. \& Gasque, L. (1987). Acta Cryst. C43, 428-430.

